Comment Sephora prédit ses ventes quotidiennes... et adapte son marketing
Prédire les ventes quotidiennes de son site e-commerce grâce au machine learning : tel était l'objectif de la marque Sephora, qui a expliqué à l'occasion du Salon Big Data Paris, les 12 et 13 mars 2018, les avantages pour le marketing.

"Avec un site e-commerce déployé dans plusieurs pays, nous avions besoin, pour piloter notre activité online de réaliser des forecasts, soit la mesure de la fiabilité des prévisions de vente quotidiennes", témoigne Clément Marchal, Manager Data Science de l'enseigne Sephora, à l'occasion du Salon Big Data Paris 2018. Utile pour les ventes, le forecast (la qualité des prévisions commerciales) ne l'est pas moins pour le marketing - afin de piloter son plan marketing - ou pour le service client, afin d'anticiper le volume de contacts supplémentaires en passe de le contacter. Piloté manuellement par le service marketing de Sephora, le forecast représentait un "lourd investissement en temps pour les équipes", explique Clément Marchal.
Pour permettre au marketing de se consacrer pleinement au coeur de son activité, Sephora s'est donc lancé dans un projet de machine learning. Et ce, avec plusieurs enjeux : de data (sur quelles sources de données s'appuyer ?) ; de machine learning (quels algorithmes

Sur le même thème
Voir tous les articles Data