E-marketing.fr Le site des professionnels du marketing

Recherche
Magazine Marketing

Prévoir le futur, la nouvelle science des marketers (2/2)

Publié par le - mis à jour à
Prévoir le futur, la nouvelle science des marketers (2/2)

Anticiper le futur est le rêve de tous les marketers. Découvrez la marche à suivre pour mettre en place un "marketing prédictif" efficace.

Je m'abonne
  • Imprimer

Le marketing prédictif constitue la nouvelle quête des entreprises. Afin de capter les signaux faibles émis par le consommateur et d'être en mesure d'en déduire leurs comportements futurs, de nouvelles technologies ont vu le jour ou se sont affirmées. Remisez votre boule de cristal, le prédictif préfère les algorithmes de machine learning, les infrastructures de stockage et le marketing automation.

Premier enjeu: rassembler les données recueillies dans une data management platform, puis les analyser. Prudence, néanmoins, car si nombre d'annonceurs se lancent, il faut savoir trouver une rentabilité à ce type de projet: "Une DMP ne doit pas être qu'un "sac à cookies", mais être à même de suivre en temps réel des profils riches d'utilisateurs pour les activer de manière fine et individuelle", avise Grégoire Frémiot, vice-président sales et marketing de Mediarithmics, plateforme de predictive marketing.

Place, ensuite, à la définition des scénarios, puis à leur activation, via du marketing automation. "La phase d'analyse se traduit par des algorithmes qui prévoient, par exemple, l'attrition, évaluent des prospects à l'aide de scores, calculent l'appétence ou le risque, explique Vincent Luciani (Augusta Consulting). Puis, lors de l'activation, l'enjeu est d'intégrer les scores aux différents outils, comme les outils d'achat médias, le centre de contact, le routage de mails."

Pour ce qui concerne la prédiction d'offres ou de produits, les moteurs de recommandation aident à proposer le bon produit au bon consommateur. "Pour être pertinentes, les recommandations doivent s'appuyer sur les données CRM disponibles et sur les données de navigation des prospects et clients, note Grégoire Frémiot. Celles-ci peuvent se faire à plusieurs niveaux: en publicité display programmatique avec du retargeting; on-site, en poussant un message sur un produit ; ou en e-mailing après une visite sur le site, afin de faire de l'upsale."

Et pour quel coût ?
Difficile de déterminer le coût d'une démarche de marketing prédictif, tant celui-ci dépend du volume de données et de l'ambition de son maître d'oeuvre. Coûts de stockage, de traitement et de mise à disposition des données, sans oublier le coût humain: "Les différentes technologies coûtent cher, aussi est-il primordial en amont de bien qualifier les gains attendus et s'assurer que la mise en place pourra être rapide pour sécuriser le RO", commente Grégoire Frémiot (Mediarithmics). Rien que pour l'utilisation d'une DMP, la plupart des annonceurs doivent compter entre "100 et 500 000 euros, par an, chiffre Vincent Luciani (Augusta Consulting). Mais il est vrai que pour certaines grandes entreprises n'ayant pas un accès direct aux clients, mieux les connaître, sans intermédiaire, cela n'a pas de prix."
"Il faut investir si l'on souhaite avoir une vision client à 360 ° et se positionner vers plus de personnalisation, observe aussi Bruce Hoang (Orange France). Centraliser l'ensemble des données brutes a un coût non négligeable, avance-t-il, mais nous utilisons des frameworks en open source tels qu'Hadoop, dont le coût de licence est quasi nul, sans compter les avantages tels que l'accès de tous les métiers à une donnée ayant le même référentiel."
Quant au ROI, il peut se révéler puissant. Vincent Luciani cite quelques exemples: "Grâce au déploiement d'une DMP, Kellogg's a, en 2013, amélioré l'efficacité du ciblage de 24%. Et en utilisant des données dans la personnalisation de ses e-mails, Fnac a augmenté son chiffre d'affaires de 30% sur ses campagnes."

> Lire la suite en page 2



 
Je m'abonne

NEWSLETTER | Abonnez-vous pour recevoir nos meilleurs articles

La rédaction vous recommande